MIM-304H

Stainless Steel 304 High Cabon Content NEWAY PRECISION WORKS

NewayPrecision

www.newayprecision.com

Technical Data: 304H as sintered

Product Description

MIM-304H is an alloy of stainless steel used in metal injection molding (MIM) technology. It offers high strength, hardness, and excellent corrosion resistance, making it ideal for use in demanding applications.

Physical	Nominal Value Unit	Test Method
Density	7.9 g/cm3	ASTM B311
Melting Point Range	1390-1440 °C	-
Coefficient of Thermal Expansion	17.3 μm/m°C	ASTM E228
Thermal Conductivity	16.2 W/mK	-
Electrical Resistivity	72 μΩ-cm	ASTM B193
Magnetic Permeability	1.02	ASTM A342
	1.162	Min.
Oversize factor	1.165	Average
	1.168	Max.
	800	Min.
MFI g/10min	1200	Average
	1600	Max.
Mechanical		
Ultimate Tensile Strength	655 MPa	ASTM E8M
Yield Strength (0.2% Offset)	380 MPa	ASTM E8M
Elongation at Break	30%	ASTM E8M
Modulus of Elasticity	190 GPa	ASTM E111
Poisson's Ratio	0.27	ASTM E132
Impact Strength	50 J	ASTM E23
Compressive Strength	310 MPa	ASTM E9
Shear Strength	285 MPa	ASTM B769
Hardness	HRB 88	ASTM E18
Chemical	47.40+0/	A CTM F4 0 4 0
Chromium	17-19 wt%	ASTM E1019
Nickel	8 - 10 wt%	ASTM E1019
Carbon	≤ 0.08 wt% ≤ 2 wt%	ASTM E1019 ASTM E1019
Manganese Silicon	≤ 2 wt% ≤ 1 wt%	ASTM E1019 ASTM E1019
Phosphorus	≤ 1 wt% ≤ 0.045 wt%	ASTM E1019 ASTM E1019
Molybdenum	= 0.045 Wt/0	ASTM E1019 ASTM E1019
Salt spray test	- 36 h	ASTWILIUTS
	30 11	
Injection process		
	Zone 1	185℃
	Zone 2	185℃
Recommended injection temperature	Zone 3	175℃
	Zone 4	150℃
	Nozzle	190°C
Recommended injection temperature	90- 125°C	
Reference density interval	5.35-5.41 g/cm3	
Other injection molding process parameters are greatly affected by product shape and requirements so they		

Other injection molding process parameters are greatly affected by product shape and requirements, so they are not written out.

It should be noted that the setting of injection molding process has a great influence on the green density of the product, which may also cause the final size of the product and other requirements do not meet the user's expectations.

Note

MIM-304H

Stainless Steel 304 High Cabon Content **NEWAY PRECISION WORKS**

NewayPrecision

Debinding Process

Debinding acid 98% HNO3 Debinding temperature 100- 150℃

Depending on part thickness (e.g. 3mm part approx. Debinding time

When the minimum debinding rate of green part Debinding rate

reaches

Sintering

Sintering atmosphere 100% dry argon

Sintering substrate Non-metallic base (e.g. Al2O3)

From room temperature to 600 ℃, vacuum debinding with multi-stage holding temperature Negative pressure debinding ensures that the remaining binder can be

obliterated, and the total time is around 450 min.

From 600 $^{\circ}$ C to 850 $^{\circ}$ C at 3 $^{\circ}$ C / min and holding for a period of time, the vacuum internal sintering is Vacuum sintering carried out to ensure that the carbon content of the

product is in a reasonable range.

From 850 $^{\circ}$ C to 1050 $^{\circ}$ C at 3 $^{\circ}$ C/ min, holding for a short time, and then it was raised to 1380 °C at Partial pressure sintering the same heating rate for material densify and finally

cooled with the furnace.

